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Figure 1. Long-Term Treatment with Colony-Stimulating Factor-1 Receptor (CSF-1R) Inhibitors
Promotes Tumor Resistance. After responding to CSF-1R inhibitors, the remaining dormant tumor cells
rebound and start proliferating due to the insulin-like growth factor 1 (IGF-1)-mediated induction of the PI3K
pathway. IGF-1 is produced by tumor-associated macrophages and microglia (TAMs) in response to the IL4–
NFAT/STAT6 pathway.
inhibitors partially prevented tumor recur-
rence (Figure 1).

The work by Quail et al. shows a fascinat-
ing interplay between TAMs and tumor
cells that evolves during treatment to
adapt and escape CSF-1R inhibition.
Although TAMs are genetically more sta-
ble than tumor cells, TAMs still maintain
the versatility to change and facilitate the
growth of tumors. Following the parallel-
ism with ecosystems, cancer does not act
as an ‘organism’ in isolation but evolves in
intimate contact with its microenvironment
to subsist in changing conditions. In a
way, tumor cells ‘tame’ TAMs to resist
the selective pressure of anticancer
treatments.

The work is performed using animal
models and hence the translation of
some of the results into human reality
could be limited. We know that human
tumors are more complex and heteroge-
neous than those in mice. In addition, we
still do not know how the specific geno-
mic makeup of each human GBM will
impact the response or resistance to
anti-CSF-1R. Moreover, this work raises
new questions. Why and how does IL4
suddenly appear in just half (and not
all) of the dormant tumors to drive resis-
tance? How will the standard of care
(radiotherapy- and chemotherapy) with
which patients are treated affect these pro-
cesses? Most GBM patients exhibit a
hyperactive PI3K pathway due to either
PTEN alterations or PIK3CA mutations
[8] – will this impact the CSF-1R response?
The answers to these questions will facili-
tate quick translation of the findings of
Quail et al. to the benefit of patients.

Quail and coworkers are advancing the
results of clinical trials to prepare for
potential resistance to CSF-1R inhibitors
and to then act accordingly. We must now
wait for the clinical outcome in patients to
validate their results and, based on the
described findings, be ready to counteract
the versatile and evolving tumor-niche
ecosystem through rational and effective
combinatory treatments.
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Spotlight
Mitochondrial UPR:
A Double-Edged
Sword
Ye Tian,1,2

Carsten Merkwirth,1,2 and
Andrew Dillin1,*

The mitochondrial unfolded protein
response (UPRmt) promotes the
recovery of dysfunctional mito-
chondria. Surprisingly, UPRmt acti-
vation inadvertently maintains and
propagates the deleterious mtDNA
in a heteroplasmic Caenorhabditis
elegans strain, with detrimental
consequences. This study extends
our understanding of the UPRmt

and provides a possible therapeutic
target for diseases associated with
mtDNA mutations.

The plethora of human diseases caused by
mitochondrial dysfunction is staggering [1].
Many of these diseases are caused not
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Figure 1. The Role of ATFS-1 in DmtDNA Maintenance and Propagation. Activation of the mitochon-
drial unfolded protein response (UPRmt) and functional ATFS-1 maintain and propagate deleterious mitochon-
drial genomes (DmtDNA) in the context of mtDNA heteroplasmy (left panel). Impaired UPRmt signaling due to
loss of ATFS-1 activity results in a reduced load of deleterious DmtDNA molecules (right panel). Black circles,
wild-type mtDNA; red circles, DmtDNA.
only by mutations of nuclear-encoded
mitochondrial genes but also by mutations
in the mitochondrial genome. For example,
mtDNA deletions lead to Kearns–Sayre
syndrome, which is characterized by paral-
ysis of the eye muscles, heart failure,
ataxia, hyperparathyroidism, and a high
incidence of diabetes. Moreover, accumu-
lation of mtDNA deletions has been
observed in individual muscle cells and
neurons during the aging process [2].
How the propagation of deleterious mito-
chondrial genomes within populations
manifest and are maintained is an elusive
question that has recently been addressed
by Cole Haynes and colleagues.

Mitochondrial genomes encode 13 genes
(12 in C. elegans) that are part of the oxi-
dative phosphorylation (OXPHOS) com-
plexes. Most OXPHOS subunits are
nuclear-encoded genes whose products
are imported into mitochondria. Different
from the single genome in the nucleus,
hundreds of mtDNAs exist in each cell. A
single mtDNA mutation has little impact on
the well-being of the host cell and can exist
in a process known as heteroplasmy [2].
Within heteroplasmy, the ratio of mutant to
wild-type mtDNA determines the onset of
clinical symptoms. Typically, a ratio of 60–
90% mutated mtDNA is required for the
clinical phenotype to develop, but this
varies dramatically for different mtDNA
mutations. Tissues or organs with the high-
est energy demands, such as skeletal
muscle, brain, and heart, are more suscep-
tible to mtDNA mutations. How mutated
mitochondrial genomes expand within
cells has been of great interest and an
unsolved problem in biomedicine.

When OXPHOS is dysfunctional or
unfolded proteins accumulate within mito-
chondria, cells activate the UPRmt, a tran-
scriptional response mediated by the
transcription factor ATFS-1 that promotes
the recovery and regeneration of defective
mitochondria [3]. Under normal conditions,
ATFS-1 is imported into mitochondria,
where it is promptly degraded. However,
when mitochondrial import efficiency is
564 Trends in Cell Biology, August 2016, Vol. 26, No. 8
compromised under conditions of mito-
chondrial stress, ATFS-1 is less efficiently
imported into mitochondria and translo-
cates to the nucleus to induce a broad
transcriptional response including the
upregulation of mitochondrial chaperones,
antioxidant genes, glycolysis genes, and
amino acid catabolism pathways [4]. Inter-
estingly, ATFS-1 also limits the accumula-
tion of transcripts that encode the
OXPHOS components. In addition to
trafficking to the nucleus, a percentage
of ATFS-1 also accumulates within mito-
chondria to repress the OXPHOS tran-
scripts encoded by mtDNA [5]. In
summary, UPRmt activation promotes
mitochondrial proteostasis capacity and
protects mitochondria from further
damage.

The protective function of the UPRmt in
mitochondria, including bacterial infection,
hematopoietic stem cell maintenance, and
general aging, has been well studied [6]. A
recent study reported in Nature suggests
a new role for the UPRmt in response to
deleterious mtDNA accumulation [7].

In this study, Lin et al. examined the role of
the UPRmt in the maintenance and propa-
gation of mtDNA harboring a 3.1-kb dele-
tion (DmtDNA) encoding four essential
OXPHOS subunits within the heteroplas-
mic C. elegans strain uaDf5 [8]. This strain
has been maintained in a stable hetero-
plasmic state in which DmtDNA consti-
tutes 60% of all mtDNAs. Basal oxygen
consumption as well as total respiratory
capacity is decreased in this strain, indi-
cating that high levels of DmtDNA account
for the reduced OXPHOS activity that
results in UPRmt activation (Figure 1).

Unlike worms harboring mutations in
nuclear-encoded OXPHOS components,
the development of worms with DmtDNA
is not affected when UPRmt activation is
inhibited by atfs-1 RNAi. Unexpectedly,
atfs-1 deletion or its knockdown caused
a dramatic decrease in DmtDNA levels



from 60% to 7% (Figure 1). Similar results
were also observed in worms without germ
cells, to exclude the possibility that the shift
in DmtDNA occurred during germline
development and supporting the idea that
ATFS-1 and the UPRmt function in post-
mitotic somatic cells to maintain deleteri-
ous DmtDNA levels. Constitutive activation
of ATFS-1 further increased DmtDNA, from
63% to 73% (Figure 1), resulting in further
OXPHOS impairment, reduced mitochon-
drial membrane potential, defective crista
formation in mitochondria, and accumula-
tion of autophagosome-like structures
around mitochondria.

It is well established that mitophagy is
important for the elimination of mitochon-
dria with high levels of DmtDNA [9]. Mitoph-
agy inhibition increased the level of
DmtDNA in the heteroplasmic C. elegans
strain. However, such an increase did not
fully restore the DmtDNA level in atfs-1-
deleted worms, indicating that ATFS-1 pro-
motes DmtDNA propagation independent
of mitophagy. Notably, ATFS-1 controls a
mitochondrial biogenesis program in
response to mitochondrial dysfunction to
compensate for the loss of OXPHOS activ-
ity. Therefore, mitochondrial mass is
increased on UPRmt activation as well as
the total mtDNA copy number, including
both wild–type and deleterious mtDNAs. In
the heteroplasmic cells, it is possible that a
replicative advantage for shorter mtDNA
molecules results in the accumulation of
DmtDNA when mitochondrial biogenesis
is induced on UPRmt activation. In addition,
mitochondrial fusion and fission also limit
the accumulation of deleterious mtDNAs in
individual mitochondria to promote toler-
ance to deleterious mtDNAs in the cell.
Therefore, the combined effects of UPRmt

activation due to deleterious mtDNA accu-
mulation results in robust induction of mul-
tiple genes involved in mitochondrial
biogenesis, mitochondrial dynamics, and
mitophagy, which produces stoichiometric
imbalance for DmtDNA maintenance and
provides a favorable environment for
DmtDNA propagation but is detrimental
to the host cells.
This work raises several intriguing ques-
tions. Is the role of ATFS-1 in the mainte-
nance of mutated mtDNA molecules
restricted to deletions or does it also prop-
agate mtDNA molecules carrying point
mutations? Another important aspect to
consider is the dual role of the UPRmt in
lifespan regulation, especially regarding
prolonged UPRmt activation in a hetero-
plasmic background such as inherited
mitochondrial deletions or cancer cells.
An urgent question in the field is whether
the UPRmt in mammals acts in a similar
fashion to that in C. elegans. Future chal-
lenges will be to identify the homologous
UPRmt regulators in higher organisms,
especially the transcription factor ATFS-1.
Ultimately, understanding the molecular
roles of ATFS-1 and the UPRmt in the
maintenance and propagation of deleteri-
ous mtDNA in specific tissues in different
disease models may pave the way for the
treatment of human diseases associated
with mitochondrial mutations.
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Forum
Does Longer
Lifespan Mean
Longer Healthspan?
Malene Hansen1,* and
Brian K. Kennedy2,*

Once thought to be impossible, it is
now clear that changing the activity
of several conserved genetic path-
ways can lead to lifespan exten-
sion in experimental organisms.
In humans, however, the goal is
to extend healthspan, the func-
tional and disease-free period of
life. Are the current pathways to
lifespan extension also improving
healthspan?
Lifespan versus Healthspan
It is likely that we will look back on the first
half of the 21st century in health care as the
age of aging. The world is getting older and
the numbers are staggering: up to 20% of
the globe will be over 60 years old in the
near future and health-care costs will rise.
Chronic diseases of aging are increasing
and are inflicting untold costs on human
quality of life and there is a growing recog-
nition that solutions must be found to keep
people healthy longer.

Most medical research is targeted at dis-
eases in isolation and yet evidence is
mounting that physiologic changes asso-
ciated with aging underlie a vast majority
of chronic disease states. If this is true,
slowing aging might prevent multiple mor-
bidities simultaneously.
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